
Journal of Innovative Technology Convergence

Vol. 4, No. 1 June 2022, pp. 1-20

© 2022 The Authors.

This is an open access article licensed under the Creative Commons Attribution-NonCommercial 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/.

Published by InnoCon Publishing

ISSN 2704-4440

1

An Alternative Prototype for Improving Windows’

Method of Data Transmission for Copying and

Moving Files

Jason P. Sermeno 1, Kaiser Lou A. Sermeno 2

Abstract: Empirical studies comparing the speed or rate of data transmission of various

file transfer software versus the Windows default file transfer utility have rarely been

attempted. This study describes an implementation of the file transfer utility (prototype)

integrating the concepts of multi-threading, dynamic buffer partitioning, and Tel’s

knapsack algorithm and conducting an experiment against the Windows 7 default file

transfer utility (commercial) with regards to their transmission rate. The study presents

the motivation, experimental approach, issues in attempting this type of empirical study,

and a summary of the experimental results and insights gained.

Keywords: Data Transfer, Data Transmission, Multi-Threading, Knapsack Algorithm, Buffer

Management, Speed Test

1. Introduction

Data transmission, digital transmission, or file transfers are nearly universal concerns among

computer users. Home users download software updates and upload backup images (or delta images),

share multimedia content among peers, and enterprise users often distribute software packages to cluster

or client machines. Operating systems such as Windows, Linux, and/or Macintosh are already equipped

with these features that allow users to manage files of different sizes. This utility is commonly used and

accessed by users in their daily lives, but when software evolves, its resource files, dynamic link libraries,

systems, binary files, or the ones that have been generated by the application, grows along with it. When

these files are needed to be relocated, the need for an optimized data transfer process is critical for it to

obtain functionality throughout the system.

Previous versions of Windows operating systems, such as Windows 98, possess several

disadvantages compared to their latest version [1][2]. It is slow, and you can’t pause and resume a

transfer process [3]. But basically, these utilities are better with small-sized files because the system

implements a very small buffer to read and write a stream of data [4]. However, this type of

1 College of Computer Studies, University of Antique, Sibalom, Antique, Philippines

 Email: jason.sermeno@antiquespride.edu.ph
2 Pascual M. Osuyos Memorial High School, Tobias Fornier, Antique, Philippines

 Email: klasermeno@gmail.com

Received [February 20, 2022]; Revised [April 10, 2022]; Accepted [May 12, 2022]

An Alternative Prototype for Improving Windows’ Method of Data Transmission for Copying and Moving Files

2

implementation may slow down the transmission process and eventually wear the hard disk down due

to an enormous number of movements of the hard disk head when moving or copying large-size files

[5][6].

Algorithmic designs for data transmission have influenced a lot of developers to redesign the model.

Most of the concepts focus on memory or buffer management, scheduling algorithms, and

multiprocessing.

This study was motivated by the challenge of designing a prototype that integrates the concepts of

multi-threading, dynamic buffer partitioning, and the knapsack algorithm. It also aims to find out if there

were significant differences between both utilities in terms of speed and rate of success in resuming a

halt-state process during transmission. For these reasons, the default Windows 7 file transfer utility was

selected to be tested against the prototype for comparison.

To perform this study, a prototype was constructed, and similar case scenarios were conducted on

both subjects on a single operating system platform. The hypothesis was that both utilities have no

significant differences in their mean speed of transferring a file with regards to file size, the volume of

files being transmitted, and the physical orientation of the two devices during transmission. The results

of this study supported this hypothesis.

The rest of this paper is organized as follows: Section 2 briefly presents the contributing approaches

to the design of several file transfer utilities and some existing file transfer utilities similar to the

prototype being built; Section 3 describes the design of the prototype and the experiments done; Section

4 details the obtained results and the discussion of observations and insights; and Section 5 presents the

conclusions and future directions of the study.

2. Review of Related Literature

The opportunity of obtaining a high transfer rate between endpoints in data transmission depends on

how the system manages to schedule the read-write process, maintain the available buffer, and optimize

the isolation of files. We could establish multiple executions by buffering the partitioned files in

variable-sized partitioned blocks and writing them simultaneously on disks. However, there are

considerable bodies of work that have explored better ways to accomplish high-speed file transfers.

2.1 Contributing Approaches

While it might be true that low CPU utilization can actually indicate a problem in the input/output

(I/O) subsystem, making the CPU spend more time waiting than running. A slow disk system can drag

down the performance of all programs when virtual memory paging is involved. Thus, optimal disk

performance is critical to the system’s throughput.

2.1.1 Buffer Management Schemes

Memory access times may range from 1 to 20 clock cycles depending on whether the access hits the

CPU caches, whereas the latency of a disk access ranges in the tens to hundreds of milliseconds [7].

Processes here must wait for I/O to complete before proceeding. To avoid deadlock, certain pages must

remain in main memory during this process.

No buffer, single buffer, double buffer, and circular buffer are some of the well-known methods by

which the operating system manages to cope with processes from its local or external devices. These

basic methods of managing the buffer have influenced and motivated a large body of research in the

area of storage, aiming to increase the transfer speed, availability, and accessibility of data. One thread

of research led to the development of the Unified Buffer Management (UBM) scheme, which attempts

Journal of Innovative Technology Convergence

 3

to upgrade the performance of the Least Recently Used (LRU) block replacement scheme by making

use of reference regularities such as sequential and looping references [8]. Another similar

implementation, called Software Cache Unification (SCU), allows applications to make better use of

distributed caches by combining the speed of local caches with the large aggregate capacity of a shared

cache [9]. But these papers were focused on improvements to database systems, network-, and

microchip-related studies.

Buffering is a technique that smooths out peaks in I/O demand. However, no amount of buffering

will allow an I/O device to keep pace with a process indefinitely when the average demand of the process

is greater than the I/O device can handle. Even with multiple buffers, all of the buffers will eventually

fill up, and the process will have to wait after processing each chunk of data. However, the efficiency

and effective method for managing the buffer may depend on how it is partitioned to maximize the use

of available work space for applications.

2.1.2 Buffer and File Partitioning Strategies

Partitioning buffers and/or files have proven to have a great impact on the performance of certain

applications. It is a powerful method of managing records in a relational database scheme. One particular

partitioning strategy, called optimal splitting, illustrates the division of relations in a database into

several partitions [10]. But this strategy has nothing to do with the block size, except that it is fixed.

This algorithm is beneficial when there is a heavy data skew, but in other situations, small block sizes

make it expensive [11][12].

There are several partitioning strategies that exist. It may either be classified as no splitting, partial,

one-pass, or multi-pass partitioning. These traditional strategies, however, are employed in various

situations depending on the size of the operands that are related to the work space area. With the

traditional splitting strategy, there is a fixed size of memory for each group. When a new tuple arrives,

it is moved to its block buffer, and when the buffer is full, it is written to disk [10][11][13][14].

However, in a multiprogramming environment, when there is a variety of I/O activity and a variety

of process activity to service, file and buffer partitioning is one tool that can increase the efficiency of

the operating system and the performance of individual processes. This method can be further improved

by improving the schedule of the read-write or I/O process of a certain disk.

2.1.3 Disk Scheduling Algorithms

The details of the disk I/O operation depend on the computer system, the operating system, and the

nature of the I/O channel and disk controller hardware. Most traditional disk scheduling algorithms,

such as First-Come-First-Serve (FCFS), Shortest-Service-Time-First (SSTF), SCAN, C-SCAN, LOOK,

and CLOOK, are designed to reduce disk-seek time and increase its throughput. The FCFS algorithm

performs operations in the order in which the task arrives; however, the performance of this algorithm

is poor. SSTF reduces the total seek time compared to FCFS. The disadvantage of this scheme is

starvation, where the read/write head stays in one area of the disk if it is very busy [15]. Some studies

show that these algorithms do not consider the real-time constraints of I/O tasks and, therefore, are not

suitable to be applied directly to a real-time system [16][17][18][19]. In the SCAN algorithm, the disk

arm starts at one end of the disk and moves toward the spindle, servicing requests as it reaches each

cylinder until it gets to the spindle. From this end, the direction of head movement is reversed, and

servicing continues [17][12]. C-SCAN scheduling is a variant of SCAN designed to provide a uniform

wait time. Like SCAN, C-SCAN moves the head from one end of the disk to the spindle, servicing the

requests along the way. When the head reaches the spindle, it immediately returns to the beginning of

the disk without servicing any requests on the return trip [20][12][21]. The LOOK algorithm is also a

An Alternative Prototype for Improving Windows’ Method of Data Transmission for Copying and Moving Files

4

variant of SCAN. In this algorithm, the disk head does not move inward or outward when there is no

request in that direction. It performs better than SCAN when the load is low, but it is equivalent to

SCAN when the load is high. A variant of LOOK scheduling is C-LOOK. C-LOOK moves the head in

one direction from its current position. After serving all the requests in the current direction, the disk

head starts to serve the first request on the other end without serving the requests in its return trip. It

provides a more uniform wait time for the requests [22].

Other scheduling algorithms had been devised and analyzed by several researchers in some areas of

optimization. For example, a novel representation scheme for rotational position optimization that

reduces the manufacturing cost per drive was designed by Burkhard and Palmer in 2002 [23]. In 2007,

Bachmat [24] considered the problem of estimating the average tour length of the asymmetric TSP

arising from the disk scheduling problem with a linear seek function and a probability distribution on

the location of I/O requests. In 2008, Povzner’s team (2008) showed that by reserving disk resources in

terms of utilization, it is possible to create a disk scheduler that supports the reservation of nearly 100%

of the disk resources, provides arbitrarily hard or soft guarantees depending upon application needs, and

yields efficiency as good as or better than best-effort disk schedulers tuned for performance [14].

Dimitrijev presented a semi-preemptible I/O, which divides disk I/O requests into small temporal units

of disk commands to improve the pre-emptibility of disk access. The evaluation of this prototype system

showed that semi-pre-emptible I/O substantially improved the pre-emptibility of disk access with little

loss in disk throughput and that pre-emptive disk scheduling could improve the response time for high-

priority interactive requests [25][26].

Another disk scheduling method proposed by Bonyadi [27] was based on a genetic algorithm that

considers making a span and the number of missed tasks simultaneously. In his method, a new coding

scheme is presented that employs crossover, mutation, and a penalty function for fitness. Its parameters,

such as the number of chromosomes in the initial population, mutations, and crossover probabilities,

had been adjusted by applying it to some sample problems. The algorithm had been tested on several

problems, and its results were compared with traditional methods. Experimental results showed that the

proposed method worked very well and excelled in most related works in terms of miss ratio and average

seeks.

The choice of scheduling algorithm depends on expected performance and implementation

complexity [28][29]. The I/O architecture is designed to provide a systematic means of controlling

information and to provide the operating system with the information it needs. The I/O function is

broken into a number of layers, with the lower layer dealing with details closer to the physical functions

to be performed and the higher layers dealing with I/O in a logical and generic fashion. A key aspect of

I/O is the use of buffers rather than application processes. Buffering smooths out the difference between

the internal speed of the computer system and the speed of the I/O device, while disk scheduling is used

to improve the I/O performance of the disk.

2.2 Existing File Transfer Utilities (Prior Arts)

The biggest factor affecting the speed of any file transfer utility is what you’re copying from or to,

such as hard drives, SSDs, USB sticks, networks, etc. Most previous versions of Windows had never

been as efficient as they could be when dealing with these operations. There have been several file

transfer utilities that have been developed and are available on the Internet [30]. FastCopy [31][32] is

one particular tool developed by Shirouzu Hiroaki, that claims to offer fast transfer of files between hard

drives and copying of files within the same drive. The read-write processing depends on the locations

of the source and destination directories. When both the source and destination directories are located

on different hard drives, reading and writing are processed respectively in parallel by separate threads.

Journal of Innovative Technology Convergence

 5

But when they are located on the same hard drives, reading is processed until the big buffer fills and

immediately starts the writing process in bulk. The utility doesn’t hog resources because Multicore-

aware File Cache (MFC) was not employed in the design; rather, it uses Win32 API and C Runtime

resources only.

TeraCopy [33][34] is another utility initially designed by Code Sector in 2007 and released in early

November 2011. The application was designed to move or copy files faster and has more functions than

the native tool. It uses dynamically adjusted buffers to reduce seek times and asynchronously processes

the read-write operation between two physical hard drives. The utility supports pause and resume

features, but it can only resume the process if the utility is instructed to pause for a certain period of

time.

Another useful file copy utility is the Unstoppable Copier [35][36], designed and developed by

Roadkil in 2007. The utility was designed to copy and recover data from a physically damaged medium,

such as CDs or DVDs. Other utilities have similar functionalities but use a different approach. Their

throughput rate depends on the number of available features that are used to manage and tune up the

transfer processes.

3. Methodology

This study had undergone prototyping and experimental methods. The prototype had to be reviewed,

redesigned, and implemented before it underwent an experimental test with our existing Windows 7

default file transfer utility. The following subsections describe the concept and design of the prototype

and how the experiment was conducted.

3.1 The Prototype

Initially, the prototype was derived from an initial concept illustrated in a block diagram, as shown

in Figure 1.

Figure 1. Initial concept of the prototype under study

Reviews of existing concepts in multi-threading, buffer management, isolation, and scheduling

algorithms had allowed us to come up with a more detailed and perspective view of how the system

should be designed. Figure 2 shows a more detailed conceptual design of the prototype.

An Alternative Prototype for Improving Windows’ Method of Data Transmission for Copying and Moving Files

6

Figure 2. Conceptual Framework of the Prototype

The idea here is to determine and manage the available space left in the memory in order to calculate

and allocate the right amount of space for our partitioned source files to be buffered, which will be taken

care of by the system. In this architecture, an estimate of 1/2 of the total available space will be used to

allocate the partitioned source files, leaving the other half free for other applications to use it for other

purposes (in this case, they won’t suffer the performance of other applications during the transfer

process). With the determined buffer size, the system partitions it into several blocks where the isolated

source files are to be allocated. This method benefits from small to large file transfers and offers multiple

files to be fetched and written to the destination in a synchronized manner. The source files had to be

organized in an optimized manner to allow each thread of execution to independently maintain and

manage the buffer in an optimized way. Protocols for setting up the priority flags for each file had to be

considered in order to deal with the problematic scenarios in scheduling when unrecognizable chunks

are being processed in threads. This will allow the utility to stop a thread or skip over bad chunks of

files without interfering with the rest of the threads in Figure 2. The initial concept of the prototype

under study details the process. During transmission, the system monitors the progress, such as the

Journal of Innovative Technology Convergence

 7

details of the partitioned blocks (e.g., number of blocks created, block size, etc.), the order in which the

files are segregated and grouped together in threads, and a list of chunk information (e.g., memory and

disk addresses, pointers, etc.) in order to keep track of the files being transmitted and support the pause

and resume feature of the prototype.

Since there are tradeoffs between speed and the number of functionalities, the prototype is designed

with a small number of features to increase speed. Figure 3 shows the top-level architectural design and

describes the basic internal components of the prototype. In this figure, the main application consists of

only a small number of features to increase speed.

Figure 3. Prototype’s top-level architectural design

Figure 4 shows a sequence diagram illustrating the general view of how the prototype operates during

program execution. It basically shows how the prototype responds to user actions and/or events triggered

by the application and other corresponding classes or objects.

Figure 5 shows another perspective view of the prototype, illustrating the transmission process in

detail. In this design, the XCopy is housed in threads. Before the threads execute, they are set with

priority information that will be used in managing the priority inheritance protocol. All read and write

operations are done by the XCopy objects, and the thread objects run them simultaneously in the

background. During the read-write process, the application receives the status from the XCopy objects

about the current file, the progress of the transmission process, and several Boolean flags representing

indicators. When the transmission process is put to a halt, the prototype temporarily freezes and marks

An Alternative Prototype for Improving Windows’ Method of Data Transmission for Copying and Moving Files

8

the section of progress where it was paused, thus giving us options on whether we would like to continue,

cancel, or save the ongoing session.

Figure 4. A sequence diagram showing the general view of the prototype

Journal of Innovative Technology Convergence

 9

Figure 5. Detailed view of the prototype’s transmission process

An Alternative Prototype for Improving Windows’ Method of Data Transmission for Copying and Moving Files

10

The implementation of the design led us to the result of our final prototype. The prototype had

undergone a series of function and use case tests before being compared to the commercial utility. Figure

6 illustrates our sample output of the prototype during the transmission process.

Figure 6. Graphical User Interface (GUI) of the prototype

3.2 The Experiment

The experiment was divided into four modes of simulation. The first three sets of tests were

conducted to determine the average speed of both utilities with respect to the mode of transfer parameters.

The last set of tests was conducted to determine the mean rate of success using the pause-resume feature

between two utilities.

The file size-based test was the first test conducted wherein the utilities were tested with 9 sets of

files based on the incrementing file size from 25MB to 1.5GB of data on a partition-to-partition basis.

The second test was the volume-based test, where the utilities were tested with 9 sets of 600MB files

based on the incrementing number of assorted files from 1 to 1500 on a partition-to-partition basis. The

third test was the orientation-based test, wherein both utilities were tested by sending a 600MB file in

five different orientations of data transmission, such as partition-to-ext. partition or vice versa. Again,

the default file transfer utility was first tested and was followed by the integrated file transfer utility.

The last test was the pause-resume test, in which both utilities were tested based on their capability

of pausing and resuming a file transfer process. The results were gathered and plotted in a single-group

experimental design to determine the significance difference of the mean speed of the two utilities by

applying the t-test.

The type and size of the files were carefully selected as samples to be used in the simulation process.

To produce fair results, the current settings for each type of test were calibrated and tested three times.

The results were then determined by getting their average rounded to the nearest hundredth decimal

place to be significant.

4. Results and Discussion

The results of the experiment were carefully repeated and recorded. Both utilities were assessed by

third-party software that measures the duration of the file copy process running in parallel on both

utilities. At the end of every experimental test performed, the results were recorded in tabular form and

Journal of Innovative Technology Convergence

 11

plotted graphically to show the differences between the utilities. The following Tables 1, 2, 3, and 4 and

Figures 7, 8, 9, 10, 11, and 12 show the results and discussions of the post-activities.

Table 1. Result of the file size-based Test

File Transfer Parameter:

@ 1 File

Prototype
Windows 7 File Transfer

Utility

Time elapsed

(in sec.)

Speed

(in MB/s)

Time elapsed

(in sec.)

Speed

(in MB/s)

25 MB 2.25 11.11 2.25 11.11

50 MB 4.00 12.50 3.75 13.33

100 MB 7.75 12.90 7.75 12.90

300 MB 21.50 13.95 24.75 12.12

600 MB 43.75 13.71 45.00 13.33

900 MB 67.25 13.38 74.75 12.04

1100 MB 77.75 14.15 85.50 12.87

1300 MB 91.00 14.29 98.50 13.20

1500 MB 107.00 14.02 121.25 12.37

Average Speed 13.33 MB/s 12.59 MB/s

Figure 7. Graphical presentation of result of the filesize-based test

An Alternative Prototype for Improving Windows’ Method of Data Transmission for Copying and Moving Files

12

Figure 8. Summary of the file size-based test

In this test, the prototype performed better than Windows 7 on most levels of file sizes. It shows that

the prototype performed better with files larger than 100MB than Windows, as shown in Table 1 and

Figures 7 and 8. In addition, the mean speed of the prototype is 5.95% faster than that of the commercial

utility.

Table 2. Result of the volume-based test

File Transfer Parameter:

Number of Files

@ 600 MB File

Prototype
Windows 7 File Transfer

Utility

Time elapsed

(in sec.)

Speed

(in MB/s)

Time elapsed

(in sec.)

Speed

(in MB/s)

1 File 43.50 11.49 43.75 11.43

50 Assorted Files 44.00 11.36 44.00 11.36

100 Assorted Files 44.00 11.36 44.25 11.30

300 Assorted Files 44.25 11.30 44.25 11.30

600 Assorted Files 44.25 11.30 44.50 11.24

900 Assorted Files 44.75 11.17 45.75 10.93

1100 Assorted Files 46.25 10.81 47.25 10.58

1300 Assorted Files 46.25 10.81 47.75 10.47

1500 Assorted Files 46.75 10.70 49.25 10.15

Average Speed 11.15 MB/s 10.97 MB/s

Journal of Innovative Technology Convergence

 13

Figure 9. Graphical presentation of result of the volume-based test

Figure 10. Summary of the volume-based test

In this test, the prototype also performed slightly better than Windows 7 on all levels of the number

of assorted files, as shown in Table 2 and Figures 9 and 11. It shows that the mean speed of the prototype

is 1.57% faster than that of the commercial one.

An Alternative Prototype for Improving Windows’ Method of Data Transmission for Copying and Moving Files

14

Table 3. Result of the orientation-based test

File Transfer Parameter:

Storage Medium

@ 600 MB File

Integrated File Transfer

Utility (IFTU)

Windows 7 File Transfer

Utility (W7FTU)

Time elapsed

(in sec.)

Speed

(in MB/s)

Time elapsed

(in sec.)

Speed

(in MB/s)

HDD-to-HDD 43.75 13.71 44.25 13.56

Ext. Drive-to-Ext. Drive 47.25 12.70 47.75 12.57

HDD-to-Ext. Drive 47.75 12.57 47.25 12.70

Ext. Drive-to-HDD 48.00 12.50 47.50 12.63

Over Local Area Network 51.75 11.59 49.50 12.12

Average Speed 12.61 MB/s 12.72 MB/s

In this third set of tests, Windows managed to do better than the prototype on almost all levels of file

transfer with regards to the accessibility of the file from different locations on certain mediums, as shown

in Table 3 and Figures 11 and 12. It is intriguing that Windows performs better on local area network

file transfers than the prototype. The mean speed of the prototype is 0.79% slower than the commercial

utility.

Figure 11. Graphical presentation of results of the orientation-based test

Journal of Innovative Technology Convergence

 15

Figure 12. Summary of the orientation-based test

Table 4. Result of the pause-resume-based test

An Alternative Prototype for Improving Windows’ Method of Data Transmission for Copying and Moving Files

16

In this type of test, Windows wasn’t qualified to perform the test since it doesn’t have the ability to

pause and resume a transfer process on all levels of transfer parameters, as shown in Table 4. The

prototype, having been tested, turned out to be pretty successful on the first two sets of tests. The result

shows that the prototype has managed to carry out an overall average rate of 96% successful operations

on all aspects of the file transfer parameters.

To answer the significant differences between both utilities, we finally consolidated the data and

applied statistical treatment to each respective parameter. Tables 5, 6, and 7 show the results and

interpretation of this research using a t-test on paired samples.

Table 5. A t-test result of the file size-based test

 Prototype Windows 7

Mean 13.33444444 12.58555556

Variance 1.050427778 0.550477778

Observations 9 9

Pearson Correlation 0.520104298

Hypothesized Mean Difference 0

df 8

T Stat 2.496433279

P(T<=t) two-tail 0.037147927

t Critical two-tail 2.306004133

Interpretation (Table 5): The computed t-value obtained is 2.496433279 with 8 degrees of freedom

(df). This value is significant at the 5% level of confidence due to a greater than 2.306004133 tabular

value of .05% level at df 8 (i.e., t.05(8) = 2.306004133). This means that the mean speed of the prototype

and the Windows 7 default file transfer utility really differ from each other because the prototype is

faster than Windows with regards to file size.

Table 6. A t-test result of the volume-based test

 Prototype Windows 7

Mean 11.14559875 10.9734993

Variance 0.086471149 0.21532379

Observations 9 9

Pearson Correlation 0.983119988

Hypothesized Mean Difference 0

Journal of Innovative Technology Convergence

 17

df 8

T Stat 2.820986664

P(T<=t) two-tail 0.022459728

t Critical two-tail 2.306004133

Interpretation (Table 6): The computed t-value obtained is 2.820986664 with 8 degrees of freedom

(df). This value is significant at the 5% level of confidence due to being less than 2.306004133, a tabular

value, of .05% level at df 8 (t.05(8) = 2.306004133). This means that the mean speed of the prototype

and the Windows 7 default file transfer utility really differ from each other because the prototype is

much faster than the commercial utility with regards to the number of files being transferred at once.

Table 7. A t-test result of the orientation-based test

 Prototype Windows 7

Mean 12.61446927 12.71519417

Variance 0.568273192 0.273766114

Observations 5 5

Pearson Correlation 0.971170143

Hypothesized Mean Difference 0

df 4

T Stat – 0.817391889

P(T<=t) two-tail 0.459594194

t Critical two-tail 2.776445105

Interpretation (Table 7): The computed t-value obtained is 0.817391889 with 4 degrees of freedom

(df). This value is not significant at the 5% level of confidence due to being less than 2.776445105, a

tabular value of .05% at df 4 (t.05(4) = 2.776445105). This means that the mean speed of the prototype

is slower than the Windows 7 default file transfer utility in terms of the physical orientation of the data

transfer.

5. Conclusion and Future Directions

Empirical evidence was presented that supports our concept of integrating multi-threading, dynamic

buffer partitioning, and Tel’s knapsack algorithm in constructing a file transfer prototype as an

alternative and efficient way of copying or moving files on the Windows platform. The result of the

experiment led us to the conclusion that there is a significant difference in the transmission rate between

the prototype and the Windows 7 default file transfer utility with regards to the size of files and the

An Alternative Prototype for Improving Windows’ Method of Data Transmission for Copying and Moving Files

18

number of files being transmitted, but both are not significantly different in terms of the physical

orientation of the transmission process.

Although this study was tested and compared against only one subject, measuring only a small

problem domain, we look forward to using the insights and experience gained to plan more elaborate

studies comparing the prototype with other related third-party software.

References

[1] Vogons, “[Resolved] Windows 98 lag when copy files,” www.vogons.org/viewtopic.php?t=53578 (Accessed

July 20, 2021).

[2] M. Muchmore, “Windows, macOS, Chrome OS, or Linux: Which Operating System Is Best?,”

www.pcmag.com/picks/windows-vs-macos-vs-chrome-os-vs-ubuntu-linux-which-operating-system-reigns

(Accessed July 20, 2021).

[3] Microsoft Community, “Sharing files between Windows 98 SE and Windows Vista Home Premium,”

www.answers.microsoft.com/en-us/windows/forum/all/sharing-files-between-windows-98-se-and-

windows/ad0b389c-2134-40d1-ae6a-aaed882cc3b4 (Accessed July 20, 2021).

[4] Tom’s Hardware, “Can't transfer files to an external hard drive,” www.forums.tomshardware.com/threads/

cant-transfer-files-to-an-external-hard-drive.3399989/ (January 13, 2022).

[5] AOMEI Backupper, “Solved: External Hard Drive Freezes When Copying Files,”

www.ubackup.com/synchronization/external-hard-drive-freezes-when-copying-files-8523.html (Accessed

July 20, 2021).

[6] Microsoft Community, “Windows 7 large file transfer external hard drive freeze,”

www.answers.microsoft.com/en-us/windows/forum/all/windows-7-large-file-transfer-external-hard-

drive/3d38ba39-a6f8-4e7a-a109-22693078d90e (Accessed July 20, 2021).

[7] J. L. Hennesy and D. A. Patterson, “Computer Architecture: A Quantitative Approach,” 3rd edition, Morgan

Kaufmann: Burlington, Massachusetts, USA, 2002.

[8] J. M. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. S. Kim, “A Low-Overhead High-Performance

Unified Buffer Management Scheme that Exploits Sequential and Looping References,” in Proceedings of the

4th USENIX Symposium on Operating System Design and Implementation, vol. 4, October 2000, pp. 119-

134, Corpus ID: 84765.

[9] S. B. Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich, “A Software Approach to Unifying Multicore

Caches,” Massachusetts Institute of Technology, www.people.csail.mit.edu/nickolai/papers/boyd-wickizer-

scu-tr.pdf (January 13, 2022).

[10] M. Kitsuregawa, H. Tanaka, and T. Motooka, “Application of Hash to Data Base Machine and its

Architecture,” New Generation Computing, vol. 1, March 1983, pp. 63-74, doi: 10.1007/BF03037022.

[11] L. D. Shapiro, “Join Processing in Database Systems with Large Main Memories,” ACM Transactions on

Database Systems, vol. 11, no. 3, August 1986, pp. 239-264, doi: 10.1145/6314.6315.

[12] E. G. Coffman Jr. and M. Hofri, “On the Expected Performance of Scanning Disks,” SIAM Journal on

Computing, vol. 11, no. 1, 1982, pp. 60-70, doi: 10.1137/0211005.

[13] K. Bratbergsengen, R. Larsen, O. Risnes, and T. Aandalen, “A Neighbor Connected Network for Performing

Relational Algebra Operations,” in Proceedings of the Fifth Workshop on Computer Architecture for Non-

Numeric Processing, Association for Computing Machinery, New York, NY, USA, March 1980, pp. 96-105,

doi: 10.1145/800083.802697.

[14] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. Wong, and C. Maltzahn, “Efficient guaranteed disk

request scheduling with fahrrad”, ACM SIGOPS Operating Systems Review, vol. 42, no. 4, May 2008, pp.

13-25, doi: 10.1145/1357010.1352595.

Journal of Innovative Technology Convergence

 19

[15] M. Seltzer, P. Chen, and J. Ousterhout, “Disk scheduling revisited,” USENIX Tech Conference, 1990, pp.

313-324, Corpus ID: 62186399.

[16] T. S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley, “Performance evaluation of two new disk

scheduling algorithms for real-time systems,” Journal of Real-Time System, vol. 3, no. 3, September 1991,

pp. 307-336, doi: 10.1007/BF00364960.

[17] T. S. Chen, W. P. Yang, and R. C. T. Lee, “Amortized analysis of some disk scheduling algorithms: SSTF,

SCAN and N-StepSCAN,” BIT Numerical Mathematics, vol. 32, December 1992, pp. 546-558, doi:

10.1007/BF01994839.

[18] M. Hofri, “Disk scheduling: FCFS vs. SSTF revisited,” Communications of the ACM, vol. 23, no. 11,

November 1980, pp. 645-653, doi: 10.1145/359024.359034.

[19] B. L. Worthington, G. R. Ganger, and Y. N. Patt, “Scheduling Algorithms for Modern Disk Drives,” in the

Proceedings of the ACM Sigmetrics Conference, May 1994, pp. 241-251, doi: 10.1145/183018.183045.

[20] E. G. Coffman Jr. and C. J. M. Turnbull, “A note on the relative performance of two disk scanning policies,”

Information Processing Letters, vol. 2, no. 1, March 1973, pp. 15-17, doi: 10.1016/0020-0190(73)90019-7.

[21] Z. Dimitrijevi, R. Rangaswami, and E. Y. Chang, “Systems Support for Preemptive Disk Scheduling,” IEEE

Transactions on Computers, vol. 54, no. 10, October 2005, pp. 1314-1326, doi: 10.1109/TC.2005.170.

[22] J. M. Sohn and G. Y. Kim, “Earliest-Deadline-First Scheduling on Non-Preemptive Real-Time Threads for

Continuous Media Server,” in Proceedings of International Conference on High-Performance Computing and

Networking, LNCS, vol. 1225, 1997, pp. 950-956, doi: 10.1007/BFb0031666.

[23] W. Burkhard and J. D. Palmer, “Rotational Position Optimization (RPO) Disk Scheduling”, Technical

Report, University of California at San Diego, USA, July 2001.

[24] E. Bachmat, “Average Case Analysis of disk scheduling, increasing subsequences and space-time Geometry,”

Algorithmica, vol. 49, no. 3, September 2007, pp. 212-231, doi: 10.1007/s00453-007-9017-6.

[25] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent Multipath Transfer Using SCTP Multihoming Over

Independent End-to-End Paths,” IEEE/ACM Transactions on Networking, vol. 14, no. 5, October 2006, pp.

951-964, doi: 10.1109/TNET.2006.882843.

[26] R. M. Selvi, R. Rajaram, “A Genetic Based Approach for Multiobjective Optimization of Disk Scheduling to

Reduce Completion Time and Missed Task,” International Journal of Information Technology Convergence

and Services, Vol. 1, no. 4, August 2011, pp. 69-79, doi: 10.5121/ijitcs.2011.1407.

[27] M. R. Bonyadi, H. Rahmani, and M. E. Moghaddam, “A Genetic-Based Disk Scheduling Method to Decrease

Makespan and Missed Tasks,” Information Systems, vol. 35, no. 7, November 2010, pp. 791-803, doi:

10.1016/j.is.2010.04.002.

[28] A. Thomasian and L. Chang, “Some new disk scheduling policies and their performance,” in Proceedings of

ACM SIGMETRICS international conference on Measurement and modeling of computer systems, vol. 30,

no. 1, June 2002, pp. 266-267, doi: 10.1145/511334.511373.

[29] S. Vazhkudai, “Enabling the Co-Allocation of Grid Data Transfers,” in Proceedings of Fourth International

Workshop on Grid Computing, Phoenix, AZ, USA, November 17, 2003, pp. 44-51, doi:

10.1109/GRID.2003.1261697.

[22] Madhuparna, “12 Best Free File Copy Software for Windows PC to Copy Faster”, The Geek Page,

www.thegeekpage.com/12-best-free-file-copy-software-for-windows-10-to-copy-faster/ (July 20, 2021)

[30] Wikipedia, “FastCopy,” www.en.wikipedia.org/wiki/FastCopy (Accessed July 20, 2021).

[31] FastCopy, “FastCopy,” www.fastcopy.jp/ (Accessed July 20, 2021).

[32] Wikipedia, “TeraCopy,” www.en.wikipedia.org/wiki/TeraCopy (Accessed July 20, 2021).

[33] Code Sector, “TeraCopy for Windows/Mac,” www.codesector.com/teracopy (Accessed July 20, 2021).

An Alternative Prototype for Improving Windows’ Method of Data Transmission for Copying and Moving Files

20

[34] Softpedia, “Unstoppable Copier,” www.softpedia.com/get/System/Back-Up-and-Recovery/Unstoppable-

Copier.shtml (Accessed July 20, 2021).

[35] Roadkil, “Roadkil's Unstoppable Copier,” www.roadkil.net/program.php?ProgramID=29 (Accessed July 20,

2021).

