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Abstract: Determining the freshness of tomatoes is essential for evaluating their 

quality, impacting both consumer satisfaction and the economic benefits for farmers. 

Freshness is typically assessed by outer appearance, including color, size, and shape, 

with skin color indicating ripeness and influencing selling price. Properly assessing 

freshness also helps determine the shelf life of stored tomatoes. This study introduced 

an affordable and straightforward technique for classifying agricultural commodities 

using image processing, focusing on Kinalabasa tomatoes and classifying them based 

on color features into three categories. The study employed the MobileNetv2 

architecture for training and testing the dataset, aiming to improve the classification of 

Kinalabasa tomatoes through deep learning techniques. The study evaluated the model's 

performance using metrics like accuracy, precision, sensitivity, and specificity. The 

optimal configuration for classifying Kinalabasa tomatoes was determined to be 10 

epochs and a learning rate of 0.001. MobileNetv2 achieved a high accuracy rate of 94%, 

demonstrating its effectiveness in classifying tomatoes, though the specificity rate of 64% 

indicated some room for improvement in identifying negative instances. Comparing 

MobileNetv2 with ShuffleNet architectures will provide further insights into their 

respective effectiveness and performance in this classification task. 
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1. Introduction 

Despite increased industrialization, the Philippines remained predominantly agricultural, with crop 

production reaching a gross value of PhP 429.7 billion in the first quarter of 2019 [1]. Tomatoes 

(Solanum lycopersicum), known locally as "Kamatis," were highly valued for their medicinal benefits, 

including reducing the risk of cancer, cardiovascular disease, and osteoporosis, and their nutritional 

content, such as phosphorus, iron, calcium, and vitamins C and D [2]. Lycopene, the primary carotenoid 

in tomatoes, accumulated mainly during the fruit's final ripening stage, accounting for 80% of its 

carotenoid content [3]. The assessment of tomato freshness, indicated by outer characteristics like color, 

size, and shape, was crucial for determining quality and influencing selling prices. 

Tomatoes thrived in high temperatures and brightness, but their productivity could be limited by 

fruit-bearing tendencies and the ability to protect them from damage. High-quality yields were 

economically beneficial for farmers, as better produce fetched higher prices and was used in various 

food products such as jams, sauces, and tinned goods. Determining the ripeness stages of tomatoes also 

helped establish their shelf life if stored [4]. Accurate ripeness assessment ensured that both consumers 

and farmers benefited from high-quality, nutritious fruits. 

This study proposed a technique for classifying Kinalabasa tomatoes using Convolutional Neural 

Networks (CNNs), aiming for cost-effective and efficient classification inspections of agricultural 

commodities. Utilizing image processing, the setup processed tomato images to classify them into three 

categories based on color features. CNNs, known for their pattern recognition abilities, involved 

multiple layers, including input, activation function, pooling, and fully connected layers, to analyze 

images. The study aimed to compare the effectiveness of MobileNetv2 and ShuffleNet architectures in 

classifying tomatoes and optimizing learning rates and epochs to achieve the best results [5-7].  

 

2. Related Works 

In the rapidly evolving field of agriculture technology, this study explores advanced deep learning 

techniques, particularly convolutional neural networks (CNNs), to enhance the automation and accuracy 

of tomato ripeness assessment and fruit classification. Convolutional neural networks (CNNs) were 

extensively used for image processing, classification, segmentation, and other data processing tasks. As 

described by Thomas, CNNs are deep learning systems capable of recognizing differences between 

items in an image by learning their importance and properties, such as learnable weights and biases 

[8][9]. These networks adaptively learned spatial hierarchies of information through various building 

elements, including convolutional, pooling, and fully connected layers [10]. The performance of CNN 

models was evaluated using forward propagation on training datasets, while backpropagation with 

gradient descent optimization was used to update learnable parameters like kernels and weights. 

Deep learning achieved significant success across various application domains. Its rapid expansion 

in fields such as image processing, computer vision, speech recognition, machine translation, and 

medical imaging [11]. These applications often utilized supervised, semi-supervised, and unsupervised 

learning methodologies. Compared to traditional machine learning methods, deep learning demonstrated 

state-of-the-art performance in numerous areas, including bioinformatics, natural language processing, 

and cybersecurity. 

MobileNetv2, a CNN designed for mobile applications, aimed to reduce model size and complexity 

while maintaining efficiency. MobileNetv2 employed depth-wise separable convolution as effective 



 

Journal of Innovative Technology Convergence 

 

 101 

 

building blocks and featured shortcut connections between bottlenecks and linear bottlenecks between 

layers [12]. This architecture allowed the model to transition from lower-level concepts like pixels to 

higher-level descriptors like image categories, with bottlenecks encoding intermediate inputs and 

outputs. These features, combined with shortcut connections, facilitated faster training and improved 

accuracy, making MobileNetv2 an effective mobile-oriented network. 

ShuffleNet simplified processing by employing channel shuffle to move data between feature 

channels and pointwise group convolution. Designed for portable computing devices, ShuffleNet 

provided accurate calculations at an affordable price [13]. The channel shuffle operation enabled cross-

channel information flow between multiple convolution layers, consistently improving classification 

results with minimal speed penalties. This technique effectively increased classification accuracy in 

various settings while maintaining efficiency. 

The synthesis of related works revealed that various studies had successfully employed deep learning 

techniques, particularly convolutional neural networks (CNNs), to enhance the automation and accuracy 

of tomato ripeness assessment and fruit classification. Researchers demonstrated the effectiveness of 

CNN-based systems for automated tomato classification, highlighting their ability to reduce errors 

associated with manual methods. Some addressed limitations in previous approaches by presenting a 

CNN model that distinguished fresh and rotten fruits, using advanced systems with neural networks and 

transfer learning to achieve state-of-the-art accuracy in sorting tomatoes based on maturity. These 

studies collectively underscored the potential of deep learning models to significantly improve 

efficiency and precision in agricultural processes, thereby reducing food waste and optimizing 

production. 

 

3. Methodology 

The methodology employed in this study was to utilize a pre-trained deep learning model to classify 

three divided classes of Kinalabasa tomatoes. An experimental approach was used to determine the 

classification accuracy, precision, sensitivity, and specificity of the proposed deep learning models, such 

as MobileNetv2, compared to ShuffleNet architecture. The researchers utilized the MobileNetv2 

architecture for the training and testing of the dataset. In this study, Kinalabasa tomato samples were 

divided into three classes: ripe, unripe, and overripe. The research used 3,000 tomato samples overall, 

with 1,000 for each freshness stage. MobileNetv2 was employed to differentiate the three classes and 

determine its performance based on accuracy, precision, sensitivity, and specificity. After determining 

MobileNetv2's performance, it was compared to ShuffleNet to assess the significance of their 

differences. 

 

3.1 Dataset 

The study used Kinalabasa tomato samples classified as ripe, unripe, and overripe, as shown in Table 

1. The researchers generated their own dataset by collecting 3,000 images of Kinalabasa tomatoes found 

locally in the Philippines, manually capturing the sample images indoors with ring lights and mobile 

phones in high-resolution JPG format. The MobileNetv2 model source codes were obtained from Python. 

Deep Learning Toolbox software and the MobileNetv2 architecture were applied during training [14]. 
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Table 1. Sample Images of Kinalabasa Tomato 

Unripe Ripe Overripe 

 

 

 

  
 

 

 

 

 

3.2 Hyperparameter Optimization 

Hyperparameters were crucial for model training, affecting training time, resource requirements, 

convergence, and accuracy. The optimization of hyperparameters was done through manual search, 

testing combinations of hyperparameter values, and training the model for each combination to find the 

best result [15]. The researchers focused on fine-tuning the learning rate, which controls model weight 

changes in response to error, and the epoch, indicating the number of passes of the entire training dataset 

completed by the machine learning algorithm [16][17]. The data was split into 80% training and 20% 

testing to handle small sample sizes using augmented data. 

 

 

Figure 1. The Camera Settings Used During Image Acquisition 
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Sample images shown in Table 1 were manually captured indoors using an iPhone 8 Plus mobile 

phone equipped with a 12-megapixel camera positioned 5 cm above a white bond paper surface. The 

photos were taken in natural light, rotated and flipped, and shot in 2 – 5 frames in a steady state. A total 

of 1,000 images were taken and saved in folders in JPG format. The camera settings used during the 

image acquisition were: image size 3024 x 4032, no flash, image type JPG, and aperture f/1.8, as shown 

in Figure 1. 

 

3.3 Data Analysis Procedure 

The performance of the MobileNetv2 model was evaluated using accuracy, precision, sensitivity, 

and specificity, derived from confusion matrices [18]. These measures determined if the MobileNetv2 

model was effective in classifying the freshness of Kinalabasa tomatoes. A two-way ANOVA test was 

used to compare the performance of MobileNetv2 with ShuffleNet based on freshness classifications. 

This statistical tool evaluated the influence of two independent variables on one dependent variable and 

was used to confirm if there was a significant performance difference between the proposed deep 

learning model and existing architectures. 

 

4. Results and Discussion 

A dataset of Kinalabasa tomatoeswas collected by capturing images specifically focused on these 

tomatoes and removing the background to isolate the object of interest. This image processing task was 

performed using various background removal techniques in Google Colab (Python). Since the original 

images were in HEIC format, we converted them to the more commonly used PNG format using an 

HEIC converter. By analyzing the color distribution within the tomato images, we categorized the 

tomatoes into three groups: ripe, unripe, and overripe. These preprocessing steps were necessary for 

subsequent analysis or machine learning tasks involving image datasets. The MobileNetv2 architecture 

was configured with hyperparameters such as learning rate and epoch, testing several values to 

determine the best settings for classifying Kinalabasa tomatoes based on accuracy, precision, sensitivity, 

and specificity. To prepare the dataset for training models with MobileNetv2 and ShuffleNet 

architectures, we organized labeled images of tomatoes into separate folders, set up Google Colab, 

uploaded the dataset using unzip, and installed necessary libraries and frameworks like TensorFlow 

using pip install. Appropriate data loading and preprocessing techniques were then applied for the 

framework. 

Table 2. Testing Results of MobileNetv2 Architecture Based on Accuracy, Precision, Sensitivity, and 

Specificity 

Learning Rate Epoch Accuracy Precision Sensitivity Specificity 

0.01 5 0.90 0.90 0.90 0.60 

0.001 5 0.91 0.91 0.91 0.62 

0.0001 5 0.91 0.91 0.91 0.59 

0.00001 5 0.91 0.91 0.91 0.52 
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0.01 10 0.92 0.92 0.92 0.63 

0.001 10 0.94 0.94 0.94 0.64 

0.0001 10 0.93 0.93 0.93 0.50 

0.00001 10 0.93 0.93 0.93 0.51 

 

The MobileNetv2 architecture shown in Table 2 was successfully configured, and the values that 

gave the best results for Kinalabasa tomato were 10 for the epoch and 0.001 for the learning rate. The 

MobileNetv2 architecture achieved a 94% accuracy rate, 94% precision rate, 94% sensitivity rate, and 

64% specificity rate. The following table shows the results based on accuracy, precision, sensitivity, and 

specificity of the pre-trained deep learning models tested with different values of learning rate and epoch. 

Table 3. Testing Results of ShuffleNet Architecture Based on Accuracy, Precision, Sensitivity, and 

Specificity 

Learning Rate Epoch Accuracy Precision Sensitivity Specificity 

0.01 5 0.91 0.91 0.91 0.54 

0.001 5 0.90 0.90 0.90 0.43 

0.0001 5 0.91 0.91 0.91 0.56 

0.00001 5 0.89 0.89 0.89 0.57 

0.01 10 0.91 0.91 0.91 0.61 

0.001 10 0.93 0.93 0.93 0.54 

0.0001 10 0.92 0.92 0.92 0.50 

0.00001 10 0.93 0.93 0.93 0.53 

 

The ShuffleNet architecture in Table 3 was successfully configured, and the values that gave the best 

results for Kinalabasa tomato were 10 for the epoch and 0.001 for the learning rate. The ShuffleNet 

architecture achieved a 54% accuracy rate, 93% precision rate, 93% sensitivity rate, and 64% specificity 

rate. The following table shows the results based on accuracy, precision, sensitivity, and specificity of 

the pre-trained deep learning models tested with different values of learning rate and epoch. 

The testing results shown in Table 4 of the MobileNetv2 architecture for classifying Kinalabasa 

tomatoes revealed that a learning rate of 0.001 and 10 epochs consistently provided the highest 

performance across all metrics for ripe, unripe, and overripe categories. This configuration achieved the 

best accuracy (0.94), with precision ranging from 0.90 to 0.96, sensitivity from 0.86 to 1.00, and 

specificity of 0.64. Despite the high accuracy, precision, and sensitivity, the specificity remained 

relatively lower, indicating some challenges in correctly identifying negative instances. 
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Table 4. Testing Results of MobileNetv2 Architecture Based on Accuracy, Precision, Sensitivity, and 

Specificity of Ripe, Unripe, and Overripe Tomato Classes 

Testing Results of MobileNetv2 Architecture 

 Ripe Tomato Unripe Tomato Overripe Tomato 
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0.01 5 0.90 0.87 0.91 0.60 0.90 0.91 0.80 0.60 0.90 0.91 0.99 0.60 

0.001 5 0.91 0.93 0.84 0.62 0.91 0.86 0.90 0.62 0.91 0.95 1.00 0.62 

0.0001 5 0.91 0.88 0.91 0.59 0.91 0.91 0.84 0.59 0.91 0.95 0.99 0.59 

0.00001 5 0.91 0.86 0.89 0.52 0.91 0.90 0.84 0.52 0.91 0.96 0.97 0.52 

0.01 10 0.92 0.90 0.93 0.63 0.92 0.93 0.85 0.63 0.92 0.94 1.00 0.63 

0.001 10 0.94 0.90 0.96 0.64 0.94 0.96 0.86 0.64 0.94 0.95 1.00 0.64 

0.0001 10 0.93 0.90 0.93 0.50 0.93 0.91 0.89 0.50 0.93 0.97 0.97 0.50 

0.00001 10 0.93 0.87 0.95 0.51 0.93 0.94 0.87 0.51 0.93 0.98 0.98 0.51 

 

Table 5. Testing Results of ShuffleNet Architecture Based on Accuracy, Precision, Sensitivity, and 

Specificity of Ripe, Unripe, and Overripe Tomato Classes 

Testing Results of ShuffleNet Architecture 

 Ripe Tomato Unripe Tomato Overripe Tomato 
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0.01 5 0.91 0.92 0.86 0.54 0.91 0.86 0.88 0.54 0.91 0.95 0.98 0.54 

0.001 5 0.90 0.92 0.83 0.43 0.90 0.83 0.92 0.43 0.90 0.98 0.95 0.43 

0.0001 5 0.91 0.86 0.92 0.56 0.91 0.90 0.82 0.56 0.91 0.95 0.98 0.56 

0.00001 5 0.89 0.82 0.91 0.57 0.89 0.89 0.78 0.57 0.89 0.95 0.98 0.57 

0.01 10 0.91 0.88 0.89 0.61 0.91 0.90 0.85 0.61 0.91 0.95 0.99 0.61 

0.001 10 0.93 0.86 0.96 0.54 0.93 0.94 0.85 0.54 0.93 0.98 0.98 0.54 

0.0001 10 0.92 0.88 0.90 0.50 0.92 0.89 0.88 0.50 0.92 0.98 0.98 0.50 

0.00001 10 0.93 0.91 0.91 0.53 0.93 0.91 0.89 0.53 0.93 0.96 0.98 0.53 
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The testing results in Table 5 of the ShuffleNet architecture showed that a learning rate of 0.001 and 

10 epochs yielded the highest performance across the three tomato classifications: ripe, unripe, and 

overripe. This configuration achieved the best accuracy (0.93), with precision ranging from 0.86 to 0.91, 

sensitivity from 0.85 to 0.98, and specificity from 0.50 to 0.61. Although ShuffleNet demonstrated high 

sensitivity and precision, its specificity was generally lower compared to MobileNetv2, suggesting that 

it struggled more with correctly identifying negative instances. 

Table 6. Accuracy, Precision, Sensitivity, and Specificity (Architecture) 

Architecture Accuracy Precision Sensitivity Specificity 

MobileNetv2 0.9188 0.9183 0.9196 0.5762 

ShuffleNet 0.9125 0.9112 0.9113 0.5350 

 

Both architectures demonstrated high accuracy values, as shown in Table 6, as determined by a two-

way ANOVA, indicating their capability to make correct predictions for a significant portion of the 

dataset. MobileNetv2 achieved a slightly higher accuracy of 0.9188 compared to ShuffleNet’s accuracy 

of 0.9125. The results of the comparison provided insights into the overall correctness, precision, 

sensitivity, and specificity of the models' predictions, with MobileNetv2 generally performing better 

across these metrics. The two-way ANOVA analysis revealed no statistically significant differences 

between the performances of MobileNetv2 and ShuffleNet. While both architectures exhibited high 

accuracy, MobileNetv2 showed superior precision, sensitivity, and specificity, suggesting a better 

balance in identifying both positive and negative samples. ShuffleNet, on the other hand, had lower 

specificity, indicating a higher rate of false positives. This study utilized MobileNetv2 and ShuffleNet 

to classify Kinalabasa tomatoes into three categories: ripe, unripe, and overripe, highlighting the 

importance of considering specific requirements and trade-offs when selecting between these 

architectures. 

Table 7. Test of Between-Subjects Effect with Accuracy as Dependent Variable 

 

 

The analysis in Table 7 showed that the main effect of epoch on accuracy was highly significant, 

with an SS of 0.005, df of 1, MS of 0.005, an F-value of 96.333, and a p-value of 0.000, indicating a 

highly significant difference in accuracy between different epoch conditions and a large effect size of 

0.686. However, the interaction between architecture and epoch did not significantly affect accuracy, as 

indicated by an F-value of 0.333, a p-value of 0.567, and a very small effect size of 0.008. A two-way 

ANOVA was conducted to classify the freshness of Kinalabasa tomatoes, and the results presented also 

indicate no significant difference in accuracy due to the factors of architecture, learning rate, or their 
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interaction. The main effect of architecture on accuracy was not statistically significant, with an SS of 

0.000, df of 1, MS of 0.000, an F-value of 2.660, and a p-value of 0.111, suggesting that the observed 

difference in accuracy between different architectural conditions was likely due to chance, with a small 

effect size of 0.062. 

Table 8. Test of Between-Subjects Effect with Precision as Dependent Variable 

 

 

The two-way ANOVA conducted to classify the freshness of Kinalabasa tomatoes showed no 

significant difference in the dependent variable (precision) due to the factors of architecture, epoch, 

learning rate, or their interactions, as presented in Table 8. For architecture, the F-value was 0.360 with 

a p-value of 0.551, indicating that the observed differences in precision were likely due to chance, with 

an effect size (ES) of 0.008, suggesting a very small effect. Similarly, for architecture in relation to 

learning rate, the F-value was 0.313 with a p-value of 0.579, also indicating that the differences were 

likely due to chance, with an ES of 0.008. These results indicated that the variability in precision could 

not be attributed to the different architectural conditions tested, and the differences observed were not 

statistically significant. 

Another two-way ANOVA conducted to classify the freshness of Kinalabasa tomatoes showed no 

significant difference in sensitivity due to the factors of architecture, epoch, or their interaction. For 

architecture, the SS was 0.001, the F-value was 0.223, and the p-value was 0.639, suggesting that 

differences in sensitivity were likely due to chance with an effect size (ES) of 0.005. Similarly, for 

learning rate, the F-value was 0.059 and the p-value was 0.981, indicating no significant impact on 

sensitivity. The interaction effect between architecture and learning rate also had an SS of 6.667E-005, 

an F-ratio of 0.005, and a p-value of 0.999, showing no significant effect on sensitivity. However, a 

significant difference in specificity based on architecture, with an SS of 0.020, an F-ratio of 7.186, and 

a p-value of 0.010, suggests a significant impact. For Epoch, the p-value was 0.809, indicating no 

significant impact on specificity. The interaction effect between Architecture and Epoch had an SS of 

0.003, an F-ratio of 1.115, and a p-value of 0.297, showing no significant effect on specificity. It also 

revealed a significant difference in specificity based on architecture, with an F-ratio of 17.177 and a p-

value of 0.000 and learning rate, with an F-ratio of 8.134 and a p-value of 0.000, indicating significant 

impacts from both factors. 

 

5. Conclusion and Recommendations 

In creating our dataset for classifying Kinalabasa tomatoes, we collected and annotated a diverse set 

of images, split the dataset for training and evaluation, preprocessed the data, trained a model using 

machine learning techniques, evaluated its performance, and iterated on the process to achieve better 

results. The MobileNetv2 architecture was successfully configured, with the optimal values for epoch 
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and learning rate determined to be 10 and 0.001, respectively. MobileNetv2 achieved a 94% accuracy 

rate, 94% precision rate, 94% sensitivity rate, and 64% specificity rate. These results indicate that the 

MobileNetv2 architecture effectively classified the images in the Kinalabasa Tomato Dataset, 

performing well across all performance metrics. 

The formulated hypotheses aimed to explore and compare different performance metrics between 

two architectures, MobileNetv2 and ShuffleNet. The first hypothesis stated that there was no significant 

difference in the accuracy rates between MobileNetv2 and ShuffleNet, suggesting that both architectures 

performed equally well in terms of overall accuracy. The second hypothesis stated that there was no 

significant difference in the precision rates, indicating similar precision rates for both architectures. The 

third hypothesis proposed no significant difference in sensitivity rates, implying both architectures had 

similar abilities to identify positive instances correctly. The fourth hypothesis stated a significant 

difference in specificity rates between MobileNetv2 and ShuffleNet, suggesting a notable distinction in 

their abilities to correctly identify negative instances. 

In the field of agriculture, seeking guidance from agricultural experts, local farmers, or horticultural 

organizations specializing in tomatoes or native varieties was crucial. They provided valuable insights 

into the classification of the Kinalabasa tomato and similar local varieties. Collaborative efforts with 

other farmers, researchers, and organizations interested in preserving native varieties or studying local 

biodiversity were also recommended. By sharing information and experiences, collective contributions 

were made towards the classification and conservation of the Kinalabasa tomato. 
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